16 April 2015 1 | NET Power

NET Power

Truly Clean, Cheaper Energy

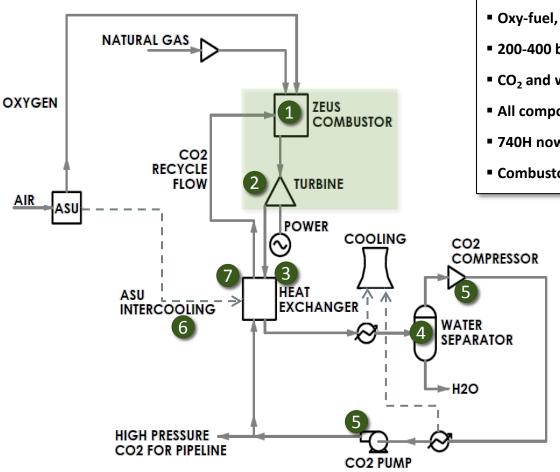
California Energy Commission CO₂ Capture Technology Workshop

April 16, 2015

16 April 2015 2 | NET Power

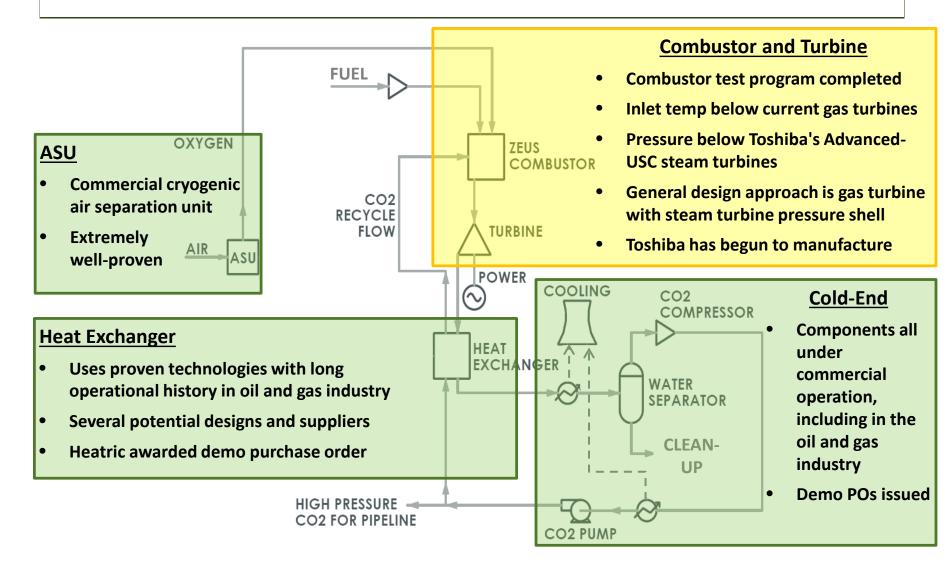
Introduction to NET Power

NET Power is an entirely new natural gas power cycle


- 1. Oxy-fuel combustion; inherent CO₂ capture and elimination of NOx concerns
- 2. Supercritical CO₂ working fluid; absence of steam and associated Rankine limitations
- 3. Highly recuperated Brayton cycle; high temperature re-heating
- 4. Simple design; employs single novel turbine and well proven-commercial equipment
- 5. Under construction; 50MWt demo plant operational in 2016
- 6. Near-term commercial readiness; in discussions for 500MWt commercial plants

NET Power offers major benefits in California

- 1. Near-zero air emissions; greater than 97% carbon capture
- 2. Highly efficient; 59% (LHV), including all parasitic loads and pipeline-pressure CO₂
- 3. Low capital cost; comparable to NGCC without capture: \$800-1200/kW
- 4. Flexible water usage; can be a net consumer or producer of water
- 5. 100% electrical turndown; fast and flexible loading
- 6. Insulated from elevated ambient temperature and altitude; nameplate power rating is robust


NET Power is based on the Allam Cycle

- 58.9% (LHV) net efficiency, with capture of >97% of carbon
- Oxy-fuel, closed-loop, CO₂ working fluid
- 200-400 bar; 6-12 pressure ratio
- CO₂ and water are the only byproducts
- All components, other than combustor/turbine, available
- 740H now in commercial use at two facilities
- Combustor and turbine under development by Toshiba
 - Fuel Combustion
 - 2 CO, Turbine
 - **3** Heat Rejection
 - **4** Water Separation
 - **6** Compression and Pumping
 - 6 Additional Heat Input
 - **7** Heat Recuperation

NET Power utilizes proven components, materials, technology

NET Power plants are highly efficient

NET Power and Combined Cycle: General ISO Efficiency Comparison (LHV)					
Energy Components	F-Class US NGCC Plant (0% CC)*	US NGCC Plant (~90% CC)*	NET Power NG Plant (~97% CC)		
Gross Turbine Output	58.7%		82.7%		
CO ₂ Compressor Power	(Compressors mechanically coupled)		-11.6%		
Parasitic Auxiliary Power	-1.2%		-12.2%		
Net Efficiency	57.5%	47.4%	58.9%		

	Parasitic Load Provides Opportunity for Efficiency Improvement		
٦.	ASU	91.8%	
L	NG Compressor	8.2%	

^{*}Performance data from NETL Cost and Performance Baseline Report, 2013.

NET Power Estimated Performance Range				
Location	Efficiency (LHV)	Cooling Approach	Water Consumption	
Vacaville, CA	55.3 – 59.2	Hybrid	<171 gal/MWh	
Bakersfield, CA	55.3 – 59.1	Hybrid	<171 gal/MWh	
Carlsbad, CA	51.8 – 56.7	Dry	0*	

^{*}Net H₂O production of ~ 0.5 MGD

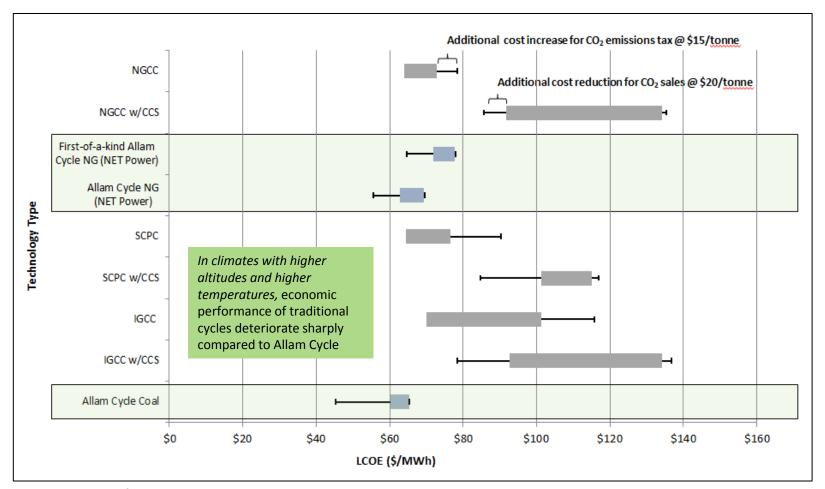
16 April 2015 6 | NET Power

NET Power offers other performance and siting advantages

Water usage can be tailored to the extent to which dry cooling is desired/required.

- Complete dry cooling enables net water production given capture of combustion derivatives (no make-up water required)
- Reduction in dry cooling complexity compared to NGCC given lower Cp value of CO₂ vs. H₂O
- Cooling temperature doesn't impact turbine performance
- Hybrid cooling offers best balance between minimal water consumption and maximum efficiency

Flexibility is in-line with NGCC, with much greater turndown capability.


- 2-3 hour projected start-up from cold start; ramp rate expected to be 2-5% per minute
- Capable of 100% turndown (no electricity to grid; CO₂ being exported); only parasitic loads operated
- Negligible impact of turndown on emissions and thermal cycling

Semi-closed loop nature of the cycle permits constant gross turbine output with net output variation in differing site ambient conditions.

- Main air compressor on ASU must be speed-controlled and sized to meet changes in air density
- Efficiency varies with changes to cooling temperatures given impact on inter-cooling schemes from more extreme ambient conditions.

NET Power produces lower cost electricity than existing systems

Levelized Cost of Electricity Note:

- LCOE calculated using EPRI methodology
- Assumes \$6.50/MMBtu natural gas and \$2.00/MMBtu coal
- Cost ranges represent data from several sources: EIA (2013); Parsons Brinkerhoff (2013); NETL (2012); Black & Veatch (2012)

NET Power's low-cost CO₂ changes the dynamic of CO₂ utilization and storage

Enhanced oil recovery economics are enhanced.

EOR remains highly viable even in a low-cost-of-oil environment

Economics of saline storage greatly enhanced, especially where other carbon monetization mechanisms exist (cap-and-trade).

Major potential to exploit fresh water generation from aquifer-pressured CO₂

Industries that are constrained by affordable, available CO₂ can be jumpstarted.

- Algae feedstock
- Chemical process feedstock
- Building materials/concrete
- Natural resource development


NET Power's deployment program is on schedule

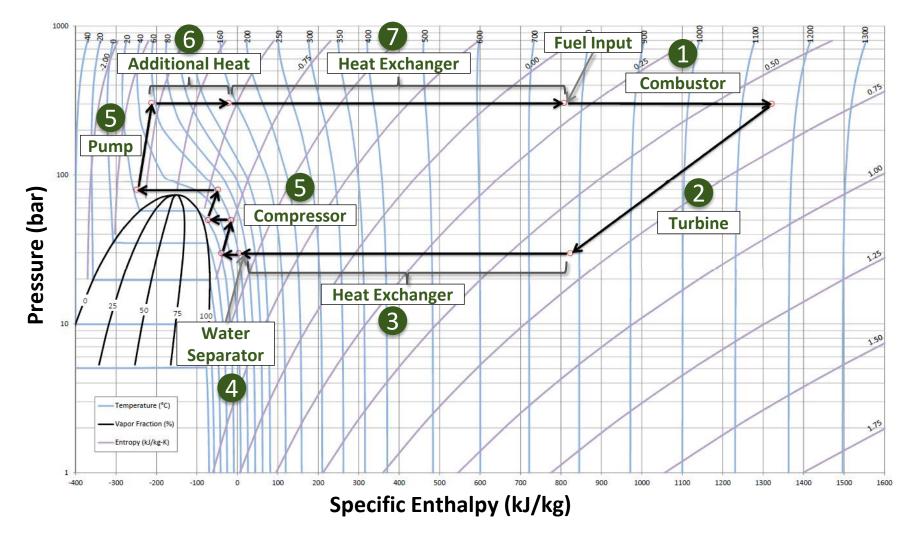
50MWth natural gas demonstration plant is underway

- Program is fully funded: \$140 million for construction, testing and operation from Exelon and CB&I; in-kind contributions from Toshiba and 8 Rivers.
- Turbine, EPC, O&M, and Technology agreements complete.
- Major purchase orders issued.
- Turbine manufacturing underway.
- Site has been selected (remains confidential).
- Commissioning to begin in late 2016.

295MWe commercial plant to be deployed in 2018-19

- Pre-FEED study completed on full commercial plant.
- Ready to begin FEED and early development work.
- Customers engaged and evaluating NET Power in resource planning and development activities for 2018-2022.
- Securing commitments contingent on price, performance.

NET Power Commercial Natural Gas Plant			
Electric Output	295MW		
CO ₂ Output	804,000 ton/year at 120 bar pressure		
ASU Output Demand	3,500 ton/day		
Site Area	13 acres		
Turndown Capability	100%*		


NET Power

+1 (919) 667-1800

www.NETPower.com / www.8RiversCapital.com

The Allam Cycle natural gas power system

